If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-56t+13=0
a = 16; b = -56; c = +13;
Δ = b2-4ac
Δ = -562-4·16·13
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-48}{2*16}=\frac{8}{32} =1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+48}{2*16}=\frac{104}{32} =3+1/4 $
| 52=2x+6 | | 5x+2-3x=2x+5 | | 25x-9=-215 | | 4n-8n-10+3=11 | | q/5+7=10 | | 25x-12-3=-215 | | 3x+1=5× | | 18=7u+5(u+6) | | 162-6x3=0 | | (a+7)/(-2)=-12 | | 32+x=115 | | 2x-x+7=x+4+3 | | 4x+5-6(x+1)=-5x+5 | | -14x+16=-12 | | 7z+3z=9z-7 | | (p-1)/(-3)=-4 | | f(18)=6(18)-12 | | 4(x-6)-6x=-34 | | (n+4)/8=-2 | | 288t-16t^2=0 | | 42m+16-18m+12=24(m+1)+4 | | 2x-8+2(2x+4)=-3(x+4) | | X(x4-14)=15 | | 8-(2y-2)=2(y-2)+3y | | 13=-16t^2+56t | | 76*b=218.88 | | 80,518+9y=13,612+24.75y | | -2(t-4=10-2t | | -7(x+3)-42=4-18 | | 6(x+6)=-5(2x-6)+8x | | 6x+-24=5x+2 | | 2*2*2*2*2*2n=(2*2*2*2*2))) |